?

Log in

No account? Create an account

Опять об Фитча

Из принципа познаваемости следует существование разумной жизни во всех возможных мирах. Доказательство:

1 будет обозначать тождественную истину

K1 = "кто-то когда-то знает тождественно истинное утверждение". Это истинно в мире α тогда и только тогда, когда его истории есть разумная жизнь.

Kp → K1 ("если в мире кто-то что-то знает, то он знает тождественно истинное утверждение") примем за аксиому.

Рассиотрим такой мир α, где разумной жизни нет. Тогда в нём истинно

1) ¬K1
2) ◊K¬K1 (из 1 по принципу познаваемости)
В каком-то достижимом мире β верно
3) K¬K1 (из 2 по семантике возможных миров) То есть в этом мире есть кто-то, что-то знающий.
4) ¬K1 (из 3 по корректности знания)
5) K1 (из 3 по аксиоме Kp → K1)

Пришли к противоречию. По-моему, это позволяет локализовать проблему вполне чётко: пункт 2 должен говорить, что в мире β мы знаем, что в α нет разумной жизни; а вместо этого получается, что мы знаем, что её нет в β.

Comments

Ну вот Хинтикка пытается в таких целях использовать свою IF-логику: Hintikka J. A second-generation epistemic logic and its general significance // Hintikka J., Socratic Epistemology: Explorations of Knowledge-Seeking by Questioning, Cambridge University Press, 2007
Спасибо. Выглядит в Google Books интересно, но там не весь текст виден. Можете прислать?
Поискал у себя на компьютере, но не нашел, к сожалению :(